Disruption of the NF-H Gene Increases Axonal Microtubule Content and Velocity of Neurofilament Transport: Relief of Axonopathy Resulting from the Toxin β,β′-Iminodipropionitrile
نویسندگان
چکیده
To investigate the role of the neurofilament heavy (NF-H) subunit in neuronal function, we generated mice bearing a targeted disruption of the gene coding for the NF-H subunit. Surprisingly, the lack of NF-H subunits had little effect on axonal calibers and electron microscopy revealed no significant changes in the number and packing density of neurofilaments made up of only the neurofilament light (NF-L) and neurofilament medium (NF-M) subunits. However, our analysis of NF-H knockout mice revealed an approximately 2.4-fold increase of microtubule density in their large ventral root axons. This finding was further corroborated by a corresponding increase in the ratio of assembled tubulin to NF-L protein in insoluble cytoskeletal preparations from the sciatic nerve. Axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed an increased transport velocity of newly synthesized NF-L and NF-M proteins in motor axons of NF-H knockout mice. When treated with beta,beta'-iminodipropionitrile (IDPN), a neurotoxin that segregates microtubules and retards neurofilament transport, mice heterozygous or homozygous for the NF-H null mutation did not develop neurofilamentous swellings in motor neurons, unlike normal mouse littermates. These results indicate that the NF-H subunit is a key mediator of IDPN-induced axonopathy.
منابع مشابه
P152: Neurotoxicants and Mechanisms Neurodegenerative in Acrylamide
Many chemicals with broad industrial, pharmaceutical and agricultural application produce a neurotoxic syndrome in humans and experimental animals involving weight loss, skeletal muscle weakness and ataxia. Neurotoxicity is defined as a structural change or a functional alteration of the nervous system resulting from exposure to a chemical, biological or physical agent. Neurotoxicity including ...
متن کاملInduction of Human Embryonic Stem Cells into neuronal differentiation by increasing cyclic Adenosine Mono Phosphate
Introduction: To evaluate the cAMP -mediated IBMX (3-IsoButyle -1-Methyl Xanthin) and db-cAMP (dibutyryl cAMP) effects on differentiation of human Embryonic Stem Cells (hESCs) into nerve cells were the objectives of this study. Methods: We have used Royan H1 hESC- derived embryoid bodies with four treatment groups: six days treatment with IBMX (5×10 -4M) and db-cAMP (10 -9M) (referred to as...
متن کاملA TOXIC NEUROFILAMENTOUS AXONOPATHIES: ACCUMULATION OF NEUROFILAMENTS AND AXONAL DEGENERATION Suggested running headline: Neurofilamentous axonopathies
A number of neurotoxic chemicals induce accumulation of neurofilaments in axonal swellings that appear at varying distances from the cell body. This pathology is associated with axonal degeneration of different degrees. The clinical manifestation is most commonly that of a mixed motor–sensory peripheral axonopathy with a disto-proximal pattern of progression, as in cases of chronic exposure to ...
متن کاملInvolvement of neurofilaments in the radial growth of axons.
The control of radial growth of axons is of functional importance because caliber is a principal determinant of conduction velocity in myelinated nerve fibers. Neurofilaments, the major cytoskeletal protein in myelinated nerves, appear to be intrinsic determinants of caliber. Evidence supporting this derives first from the linear relationship between neurofilament content and axonal diameter. F...
متن کاملNeurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport
To examine the mechanism through which neurofilaments regulate the caliber of myelinated axons and to test how aberrant accumulations of neurofilaments cause motor neuron disease, mice have been constructed that express wild-type mouse NF-H up to 4.5 times the normal level. Small increases in NF-H expression lead to increased total neurofilament content and larger myelinated axons, whereas larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 143 شماره
صفحات -
تاریخ انتشار 1998